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Abstract. The largest symmetry group of the Schrodinger equation, the so-called Schrodin- 
ger group, is analysed in connection with invariant 2-forms, 1-forms and (0,2)-symmetric 
tensors through the Beckers-Harnad-Perroud-Winternitz global method developed in the 
relativistic conformal context. Invariant fields and potentials are obtained and discussed 
in the physical context of Schrodinger electromagnetism through the corresponding 
infinitesimal method. Specific attention is paid to magnetic monopole dynamical sym- 
metries. These results are obtained in correspondence with the subalgebra classification 
determined by using the Patera-Winternitz-Zassenhaus algorithm. The accent is put on 
ihe maximal subalgebras of the Schrodinger algebra. 

1. Introduction 

Since the BHPW (Beckers er a1 1978) contribution on tensor fields invariant under 
subgroups of the conformal group of spacetime, numerous extensions and applications 
of the method have been published in the relativistic context. In particular, different 
results have been derived on gauge fields (Harnad and Vinet 1978, Harnad et a1 1979, 
Vinet 1981, Doneux er al 1982, Antoine and Jacques 1984), solutions to Yang-Mills 
equations (Yang and Mills 1954). on (Dirac) spinor fields (Beckers er al 1980, LCgarC 
1983, LCgarC and Hamad 1984), etc (Beckers and Jaminon 1978, Beckers et a1 1979, 
Beckers and Sinzinkayo 1982, Beckers and Hussin 1983a, b, 1984, Sinzinkayo and 
Demaret 1985), besides tensor fields such as 2-forms (electromagnetic tensors), 1-forms 
(four potentials) and rank-two symmetric tensors (metric tensors, for example) studied 
in Bmw. 

Interesting structures such as 0(4) ,  O(4) x 0 ( 2 ) ,  O(3) x O ( 2 , l )  seen as subgroups 
of the conformal group of spacetime did play a prominent role in particle physics 
(see BHPW) as well as in classical electrodynamics (Englefield 1972) and invariant 
objects under such structures gave very attractive information for mathematical 
physicists. 

Such studies do use fundamental tools of differential geometry (Lie derivatives, 2- 
and 1-forms, . . . , fibre bundle techniques,. . .) (Kobayashi and Nomizu 1963) as well 
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as interesting information issued from classification of subalgebras essedtially obtained 
following the PWZ algorithm (Patera et al 1975). Let us recall that the PWZ work has 
given a lot of mathematical results on maximal and non-maximal subalgebras of the 
conformal algebra as well as of physical results (Beckers er a1 1977, Boyer er a1 1976) 
through applications to wave equations with interaction. In particular, the PWZ 
algorithm combined with tensor fields invariant under the Poincari subalgebras has 
led to the study of minimal electromagnetic coupling schemes (Beckers and Hussin 
1983a, b) and to the study of constants of motion (Beckers and Hussin 1984, Hussin 
and Sinzinkayo 1985). 

All these approaches and studies can, in the relativistic case, be seen as specific 
contributions issued from the analysis of the conformal group of spacetime and of its 
(maximal up to conjugacy under the Poincari group) subgroups where the BHPW work 
plays a central role. The question is: ‘Do we know the corresponding information at 
the non-relativistic level?’. The answer is negative and the main purpose of this paper 
will be to study and to complete this non-relativistic domain. 

Let us first recall that in the non-relativistic context, Hagen (1972) and Niederer 
(1972) have put forward the largest symmetry group of the Schrodinger equation 
leading to the ‘maximal kinematical invariance group of the free Schrodinger equation’ 
or to the so-called ‘Schrodinger group’. Hereafter we will call it the Schrodinger group 
SCH3 and its algebra will be denoted by sch3, the number 3 referring to the three 
spatial dimensions (see also Roman et al 1972, Barut 1973, Niederer 1973, 1974). It 
corresponds to the conformal group of spacetime in the relativistic case, so that we 
can also speak about a conformal Galilean symmetry group. Such a structure and some 
of its substructures have already been studied (Burdet and Perrin 1972, 1975, Burdet 
et al 1973). More particularly the case of SCH, has been analysed (Burdet et a1 1978) 
through the PWZ algorithm in order to get all the subalgebras of schZ (and of its central 
extension s&J, while the corresponding analysis of sch, is missing! 

Let us secondly come back to the question asked above and consequently propose 
to solve the missing case sch,. This purpose will be developed in the following but 
by limiting ourselves to the same level as the one developed in the relativistic case in 
BHPW. Effectively, we want to get the maximal (up to conjugacy under the Galilei 
algebra) subalgebras of sch, and then to apply invariance considerations on different 
tensors (2-forms, l-forms and symmetric (0,2)-tensors, hereafter called F, A and S 
respectively). Using global and infinitesimal methods, these invariant tensors will be 
determined and the non-trivial results will be related to physical situations. In particular 
the interesting case of magnetic monopoles in a non-relativistic context will be recovered 
and connected to recent works (Jackiw 1980, Horvathy 1983, D’Hoker and Vinet 1984, 
1985). We also will consider a six-dimensional non-maximal subalgebra leading to 
non-trivial electromagnetic considerations. 

Our paper is organised as follows. In 0 2 we just recall some fundamental elements 
on the Schrodinger group of three-dimensional space and time and its algebra. Section 
3 is devoted to the construction of the maximal subalgebras of sch, through the use 
of the PWZ algorithm up to conjugacy under the Galilei algebra. Then we essentially 
study in § 4 the tensor fields F, A and S invariant under those maximal subalgebras 
by the use of the global method displayed in BHPW. Section 5 contains specific 
information on Galilei’s and Schrodinger’s electromagnetisms and more particularly 
on associated transformation laws of the fields F and A as well as on their invariance 
conditions issued from the infinitesimal method. The comparison with the results of 
0 4 is realised within the physical context of Schrodinger’s electromagnetism. Finally 



Non-relativistic conformal symmetries 3473 

in 5 6 we present some comments, in particular, in connection with physical constants 
of motioii. 

In  order to avoid some confusion, let us already mention here that all physical 
notions referring to ‘electromagnetism’ are necessarily seen in the non-relativistic 
context and more particularly in the so-called magnetic limit of the Maxwell theory 
(Le Bellac and LCvy-Leblond 1973). 

2. The Schrodinger group and its algebra 

It is well known (Hagen 1972, Niederer 1972) that the maximal kinematical invariance 
group of the free Schrodinger equation-the so-called Schrodinger group SCH3-is a 
twelve-parameter Lie group corresponding to Galilean transformations supplemented 
by dilations and expansions. A 5 x 5 matrix representation of SCH, is given by 

where R is a 3 x 3 matrix of S0(3),  T = (U, a )  is a 3 x 2 real matrix and L is a 2 x 2 
matrix of SL(2, R), L =  (F  {) ( E S  - B y =  1, E ,  p, 7, S E R ) .  These matrices do act on 
elements U ={U’, U*, u3, u4, U’} of R5 such as 

u t  = gu. (2.2) 

The action of the Schrodinger group on Newtonian spacetime ( i W 3 + l )  events (x, t )  is 
obtained through the correspondence (U’ f 0) 

x‘  = u ‘ / u ’  ( i  = 1,2,3)  t = u4 /  u 5 .  (2.3) 

Conversely, to each event (x, t )  on [w3+’, we associate a ray in R5 by the relation 

(x, t ) + ( A x ,  At ,  A )  A f O  (2.4) 

two points U and U in R5 being equivalent iff U = AV for some A # 0. The transformation 
law on (x, t )  is now given by 

x ‘ =  Rr+ ut+  a / (  yr+  6 )  t‘= E t  +/3/(rt + 6 )  ( t  # -a/ Y). (2.5) 

The infinitesimal version of (2.5) is then 

x’ = x + 8 x x + ut + ; a x  + CtX f a 

t‘= t + at + C t 2 +  b 

where we can see that the effect of dilations ( c y )  is not the same on spatial and time 
cobtdinates. 

The Lie algebra sch, can be written as the semi-direct sum (Burdet et a1 1978) 

S C ~ ,  = (t,@tT) (SO(3)@~1(2, R)) (2.7) 

and a basis of generators is given by K and P for the Abelian algebras t3 and t f ,  by 
J for so(3) and by H, 0, C for sl(2, R). These generators are respectively associated 
with pure Galilean transformations (U), spatial translations ( a ) ,  spatial rotations (e), 
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time translations ( b ) ,  dilations (a) and expansions (or one-dimensional special confor- 
mal transformations) (c). The commutation relations are given by 

(2.12) 

[ C, p k ]  = -iKk [ c, Kk] = 0. 

A specific realisation of the twelve generators can be explicitly given. We have 

P =  -iV K = itV J = - i x x V  H = id, 

D = i j ta,  + f x .  V) 
(2.13) 

Let us finally recall that the Schrodinger group admits a non-trivial central extension 
by R called SFH3 and that the corresponding algebra z3 is obtained by defining new 
generators K and C realised as 

c = i (  t'a, + tx v).  

K = i t V + m x  C = i( ['a, + tx - V) + ( m/2)x2. (2.14) 

The commutation relations of a, are essentially given by (2.8)-(2.12) except the ones 
between K ,  and P k  which are replaced by 

[ K,,  P k ]  = im6,k. (2.15) 

3. Maximal subalgebras of sch, 

Here let us classify the maximal subalgebras of the Schrodinger algebra sch3 into 
conjugacy classes under the Galilei group. In order to d o  this we have to determine 
the subalgebras, up  to conjugacy, of sch, following the PWZ classification method 
(Patera er a1 1975) but since we are interested in the maximal ones we effectively have 
to determine only some of them as wil! be clear in the following. 

Let us recall (Burdet et a1 1978) that the algebra sch, is a semi-direct sum of n U f 
where n = t,Ot: is an  Abelian ideal of dimension 6 and  f is identified with so(3)O 
sl(2, R) as is clear from (2.5). Now let us summarise the classification method (Patera 
et a1 1975). Firstly, we classify all the subalgebras f, o f f  into conjugacy classes under 
the Galilci group. Secondly, we search for the subspaces n z k  of n invariant for each 
f, .  Thirdly, the splitting subalgebras of sch, which are the semi-direct sums nlk C f ,  
are constructed and finally the non-splitting subalgebras can also be obtained. The 
only point that we have to solve completely is the first one ( 5  3.1). Then we have to 
consider only some invariant subspaces n,k in order to find all the non-conjugated 
maximal subalgebras of sch,, these ones being splitting subalgebras only ( §  3.2). 
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3.1. Conjugacy classes of subalgebras o f f  under the Galilei group 

The only non-trivial subalgebra of so(3) = { J }  is evidently so(2) (generated by J3 for 
example). Then, let us search for non-equivalent subalgebras of sl(2, OB) generated by 
H, D and C satisfying (2.10). The more general combination of these three generators 
gives the new one 

Q = pH + vD+ TC p, U, T E R .  (3 .1)  

Here, the conjugacy under time translations, contained in the Galilei group, is relevant. 
Indeed, we have 

exp(ibH)Q exp(-ibH) = ( p  - vb + rb2)H + ( U  - 27b)D+ TC. (3.2) 

Let us discuss this result. 
( i)  If p, U, T # 0, we can choose T = 1. Then, for b =;U, Q is equivalent to C + aH, 

a E R. Otherwise, if b is such that p - vb + b2 = 0 then Q is equivalent to C + pD, p E R. 
If p, T # 0 and v = 0 (with T = l),  C + aH becomes equivalent to C + pD, p E R. If U, 
T # 0 and p = 0 (with T = l ) ,  C + VD becomes equivalent to C + a2H, (T E R. If p, v = 0 
and T # 0, we recover the generator C. 

(ii) If T = 0 and p, v # 0, we can choose v = 1 so that, with b = p, Q becomes 
equivalent to D. If T = O  and v = O ,  we recover H. 

Thus, the non-equivalent subalgebras of dimension 1 of sI(2, R) are generated by 
{ H}, ( D } ,  (C} and IC + aH, a E R}. Using this result we can easily construct the 
subalgebras of dimension 2: there are only two, i.e. {H,  D }  and (0, C}. The algebra 
sl(2, R) admits two non-trivial subalgebras of dimension 2 and three of dimension 1 
as well as an infinite family of dimension 1. 

By combining this information we obtain all the subalgebras o f f  listed in table 1. 

Table 1. Non-equivalent subalgebras of f =  so(3)@s1(2, R )  

Dimension Notation and generators 

3 

2 

I 



3476 V Hussin and M Jacques 

3.2. Non-equivalent maximal subalgebras of sch, 

With the preceding results, we can see that the only maximal subalgebras of so(3)@ 
sl(2, R) are the algebras f , ,  fi,  f,, f, and f8.  Moreover, n = { K ,  P }  and no = ( 0 )  are 
evidently two particular invariant subspaces for n so that the algebras no U f l  , n 0 f2, 
n 0 f,, n 0 f, and n 0 f8 are splitting subalgebras of sch,. These are the only non- 
equivalent maximal subalgebras of sch,. Indeed all the other splitting or non-splitting 
ones are subalgebras of at least one among the maximal ones. These algebras, their 
corresponding dimensions and their bases of generators are listed in table 2. 

Table 2. Maximal subalgebras of sch, 

Notation Dimension Generators 

Let us make a few comments about the structure of these algebras. The first one 
is the algebra f = so(3)@s1(2, R) itself. Such an algebra also appears as maximal into 
the conformal algebra. It has already received much attention in the literature in the 
Schrodinger (Jackiw 1980, Horvathy 1983, D'Hoker and Vinet 1984, 1985) as well as 
in the conformal (Beckers er a1 1978) contexts. For the second one n 0 f2 we recognise 
the seriii-direct sum of the Galilei algebra with the one-dimensional algebra { D }  
associated with dilations. It appears maximal in the Schrodinger algebra as the 
similitude algebra sim(3,l) is maximal (Beckers et a1 1978) in the algebra of the 
conformal group of spacetime. The third one, denoted n U f,, appears here as non- 
equivalent to the previous one since we have conjugated by the Galilei group and not 
by the Schrodinger group itself. The fourth subalgebra is clearly n 13 ( s o ( ~ ) @ s o ( ~ ) )  
while the fifth one is n 0 (so(2)@s1(2, R)). 

In correspondence with these five maximal subalgebras obtained in table 2, we get 
by exponentiation five maximal subgroups respectively denoted G I  = SO(3)O SL(2, R), 
G2,  G3, G4, G, which will be of interest in § 4. 

As a final comment, let us mention, besides the maximal subalgebras and subgroups, 
one of the six-dimensional non-maximal subalgebras of sch, generated by { J 3 ,  K ,  P, , C }  
which is contained in the two maximal subalgebras n 0 f, and n 0 f8.  The correspond- 
ing group will be denoted G, and will also be considered in the following sections. 

4. Invariant tensor fields: global method 

Let us now determine, by using the global method displayed in BHPW, invariant tensor 
fields under the five maximal subgroups of SCH, and one of its six-dimensional 
non-maximal subgroups (00 4.1-4.6). We intend to consider 1-forms, 2-forms and 
symmetric (0,2)-tensor fields. Due to the linear action of SCH, on R5, we first determine 
such invariant fields on (at most four-dimensional) submanifolds of R5 and then project 
them back to the Newtonian spacetime R3+'. 
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Let us now very briefly review the global method (Beckers e? a1 1978) in order to 
introduce the notations in the Schrodinger context. Let po  be a generic point in Ws 
and G a subgroup of SCH3. The orbit of G through po  is the submanifold of R5 defined 
by 

Gpo = { p  E Rs13g E G: p = gpo}. (4.1) 

Here, the orbit structure of R3+' under the action of G is particularly simple: up to 
singular (lower-dimensional) submanifolds, the whole space is actually the orbit of G 
through p o .  In the following, we thus only consider the global method for tensor fields 
defined on one orbit. Let Go be the isotropy subgroup of G at po,  i.e. 

Go = {g E Glgpo = Po).  (4.2) 

With respect to the coordinate system {U"} introduced in § 2 ,  all G-invariant 
( r ,  s)-tensor fields $ on Gp, in Ws will be obtained by carrying out the following two 
steps. 

(i) Solve the isotropy condition at po: Vg0E Go 

q: J:(Po)  = (go)$, * * * (gO)i,(ga;;. . . (ga;:4;; I y p o ) .  (4.3) 

(4.4) 

(ii) Apply the group transformation to get the field at any point of the orbit: 

4;; I:(p) = +;; j:(gpo) = k ) 2 ,  . . . (g)k,(g-I);; . . . (g-l):$; :,(Po). 
The tensor fields we are interested in can be respectively written as 

A = A, du" 
(4.5) 

Using an obvious matrix notation for A, F and S, equations (4.3) and (4.4) become 

4 p o )  = gL%") F ( p 0 )  = g,lTF(Po)gil S(PO) = gi'TS(Po)gi' (4.6) 
and 

F = Fab du" A dub s = S o b  du" dub  ( a ,  b = 1 , .  . . , 5 ) .  

4 P )  = A(gpo) = g-'TA(Po) 

S(P) = S(gp0) = g-'rs(Po)g-'. 

F(P) = F(gp0) = g-'=F(PO)g-' 
(4.7) 

Let us consider the different cases corresponding to the subgroups G I ,  . . , , G6 and 
let us only enter into the details of the case G1 = SO(3)OSL(2, W). 

4.1. GI = SO(3)OSL(2 ,  R )  

An element g of GI  is given by (2.1) where T = 0 .  Choosing p o = ( l  0 0 0 1)=, an 
arbitrary point p of the orbit is given by 

p=gpo= [:)-[;;:) P (4.8) 

where the unit vector n* is the first column of R. The isotropy subgroup Go contains 
all the elements go€ GI  such that 

(4.9) 
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In R5, the orbit is defined by 

( u ' ) 2 +  (u2)2+ ( 2 4 2  = 1 u5 # 0. 

The cotangent space for the orbit is then given by 

U' d u ' + u 2 d u 2 + u 3 ~ u 3 = 0  

which implies, in particular, that 

(4.10) 

(4.11) 

du'Ipo = 0. (4.12) 

Using (2.3) and (4.10), we easily get the correspondence between the orbit in R5 and 

u 5  = 1 / r  u4= t / r  U' = x' /  r ( i  = 1,2,3) (4.13) 

[ w 3 + l :  

where r2 = Z:=, (xi)2.  
Let us now determine the invariant 1-forms. With (4.12), we have 

5 

A(po) = Ai dui. (4.14) 
i = 2  

Inserting (4.14) in (4.6) with go given by (4.9) yields the solution at po:  

A( p o )  = M du4 (4.15) 

for some constant M. Introducing (4.15) in (4.7) yields 

A ( p ) =  M ( 6  d u 4 - p  d u 5 ) = M ( u 5  du4-  u4du5)  (4.16) 

where we have used (4.8). Now we project A on R3+' by using (4.13) and finally obtain 

A(x, t )  = M { (  1/ r)[(dt/ r )  - ( t /  r3)x* dx] + ( t /  r4)x. dx} = M dt/  r2. (4.17) 

The invariant 2-forms F can also be easily determined. With (4.12), F ( p o )  does 
not contain any component along du '  and (4.6) yields 

(4.18) 

for some constants M1 and M,. Choosing a parametrisation for the rotation matrix 
R, the evolution law (4.7) yields 

F ( p ) = M , ~ ~ ~ U ' d u ' ~ d u ~ + M ~ d u ~ ~ d ~ ~ .  (4.19) 

F (  Po) = Mi dU2 A du3+ M2 du4 A du5 

The projection on R3+' gives the invariant 2-forms 

F(x, t )  = (M1/r3)~ykXi dx" A dXk+ (M2/r4) d t  A ( x *  dx). (4.20) 

Finally, starting with a symmetric matrix S ( p o ) ,  (4.6) yields 

S ( p o )  = M 3 [ ( d ~ 2 ) 2 + ( d ~ 3 ) 2 ] +  M 4 ( d ~ 4 ) 2  (4.21) 

for some constants M3 and M4, while (4.7) yields by using (4.11) 

S ( p )  = M ~ [ ( ~ u ' ) ~ + ( ~ u ~ ) ~ + ( ~ u ~ ) ~ ] + M ~ ( u ~  du4-  u ~ ~ u ~ ) ~ .  

The projection on R3+' gives the invariant symmetric (0,2)-tensor fields: 

(4.22) 

S(x, t )  = M3{[(dx)2/r2]-[(x. dx) ' /r4])+M4dt2/r4.  (4.23) 

From now on, we only give the essential features of the other cases. 
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4.2. Gz 
An element g E G, is given by (2.1) where 

L = ( &  0 1 / E  ". 

Choosing po  = (0 0 0 0 l)T, the orbit is given by 

p=gpo=(l;)-(;) 

(4.24) 

(4.25) 

where U is the second column of T. The elements go of the isotropy subgroup Go are 
such that U = 0, p = 0 and the isotropy conditions (4.6) imply that all invariant tensor 
fields vanish. 

4.3. G3 

An element g E G, is given by (2.1) where 

(4.26) 

(4.27) 

where o and a are the columns of T. The elements go of the isotropy subgroup Go 
are such that a = -U and y = E - ( l / & ) .  Here too, the isotropy conditions (4.6) imply 
that all fields vanish. 

4.4. G, 

An element g E G, is now given by (2.1) where 

(4.28) 

Choosing po  = (0 0 0 0 l )T,  an arbitrary point of the orbit is given by 

a a /  codv'iap ) 
(4.23) 

The isotropy subgroup Go contains all the elements go E G, such that a = 0 and L = U. 
In R5, the orbit is defined by 

[(u")'/lT]+(u5)2= 1 U 5 # O  (4.30) 

and the cotangent space for the orbit is given by 

( u 4 / u )  d u 4 +  u5 du5 = O  (4.31) 
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which, in particular, implies 

du5/, = 0. 

The correspondence between the orbit in R5 and R3+l is 

u5 = [ 1 + ( t’/a)]p2 u 4 =  t[l+(t2/c+)]-’/’ u t  = x i [  1 + ( t 2 / a ) ] - ” 2 .  

The invariant tensor fields under study are then 

A(x,  t ) =  M d t / [ l + ( t 2 / a ) ]  

F ( x ,  t )  = 0 

S(X, t ) =  N dt’/[l+(t’/u)]’ 

where M and N are arbitrary constants. 

4.5. G5 
An element g E G5 is given by (2.1) where 

cos cp -sincp 0 

Choosing p o  = (0 0 0 0 l)T, the orbit is given by 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

so that the elements go of the isotropy subgroup Go are given by a = 0, p = 0 and 
6 = 1 / ~ .  Once more, the isotropy conditions (4.6) imply that all invariant tensor fields 
vanish. 

4.6. G6 

An element g E G6 is of the form (2.1) where 

Choosing po  as (0 0 0 1 l)T, an arbitrary point p on the orbit is of the form: 

U , / ( Y  + 1) 

(4.40) 

and the isotropy subgroup Go contains all the elements go E G6 such that U = (0, 0, - - P ) ~  
and L = 8 .  The orbit in R5 is defined by 

u 4 =  1 (4.41) 
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so that its cotangent space is given by 

dU4  = 0 

U 5 = 1 / t  U‘ = x ‘ /  t. 

and the correspondence between the orbit in R5 and R3” is 

(4.42) 

(4.43) 

The invariant tensor fields are then 

A(x, t )  = M dt /  t 2  (4.44) 

F ( x ,  t ) = M l [ ( d x ~ d y / t 2 ) + ( d t / t 3 ) ~ ( y d x - x d y ) ]  (4.45) 

S(x, t )  = ( M2/  t2)(dx2 + dy’) - ( 2 M 2 /  t 3 ) ( x  dx + y dy) d t  + ( l /  t4) [  M 2 ( x 2  + y’) + M 3 ]  dt’ 
(4.46) 

where M, M , ,  M2 and M3 are arbitrary constants. 

5. Invariant electromagnetic fields and potentials: infinitesimal method 

In this section we introduce what we call ‘Schrodinger’s electromagnetism’, i.e. Galilei’s 
electromagnetism where besides Galilean transformations we include dilations and 
expansions in order to study the more general non-relativistic coordinate transforma- 
tions leading to a group structure, as is clear from § 2. Then, within this Schrodinger 
electromagnetism, we want to establish invariant 2- and 1-forms through the 
infinitesimal method (analogous to that developed in BHPW) and to relate the results 
with the ones obtained in 0 4. Let us first recall some characteristics of Galilei’s 
electromagnetism (0 5.1) and extend these considerations to Schrodinger’s electromag- 
netism (§  5 . 2 ) .  

5.1. Galilei’s electromagnetism 

The magnetic limit (Le Bellac and Ltvy-Leblond 1973) of the Maxwell theory has 
already been studied. In such a limit, the electric ( E )  and magnetic ( B )  fields satisfy 
the following set of equations: 

V x E +a,B = O  V * B = O  (5.1) 

and 

V x B = j  V * E = p  ( 5 . 2 )  

where p and j are the charge and current densities respectively. From equations (5.1), 
the ‘electromagnetic’ field F ( E ,  B )  derives from scalar ( V )  and vector ( A )  potentials 
as in the relativistic context: 

E = - V V - a , A  B = V x A  ( 5 . 3 )  

and the associated transformation laws (under infinitesimal Galilean transformations) 
are (Le Bellac and Ltvy-Leblond 1973): 

(5.4) 
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while the corresponding ones on potentials (and currents) are 

V ’ ( X ’ ,  t ’ )  = V ( X ,  t )  - U * A(x, t )  

~ ‘ ( x ’ ,  t o  = ~ ( x ,  t ) +  e x  A ( X ;  t ) .  
( 5 . 5 )  

If invariance conditions on constant and uniform electric and magnetic fields are 
under consideration, it is well known (Bacry et a l  1970) that the kinematical group of 
such F is of dimension 6 and is the largest symmetry group of non-trivial invariant F. 
From the classification of all non-equivalent subalgebras of the Galilei algebra (Sorba 
1974), it is easy to show that among the sixteen six-dimensional subalgebras only one 
of these leads to a non-trivial ‘electromagnetic’ field in the magnetic limit: it corresponds 
to the one leading to the above kinematical group and is explicitly given by the basis 
{ J3,  K 3 ,  P, H }  leaving the so-called Fll invariant: 

F11= { E  = (0, 0, E ) ,  B =  (0, 0, B ) } .  (5.6) 

Let us note that the above remark leads to a quite different result in comparison 
with the one ofthe PoincarC context (Combe and Sorba 1975) where there are non-trivial 
non-constant electromagnetic fields admitting a six-dimensional symmetry. 

Finally, let us recall (Hussin 1984) in this Galilei electromagnetism that invariance 
conditions on constant and uniform ‘4-vectors’ have also been considered. The corre- 
sponding kinematical groups are ten- or seven-dimensional structures depending on 
whether the spatial part is zero or not. These are the largest symmetries of arbitrary 
‘4-vectors’. 

5.2. Schrodinger electromagnetism 

If we add to Galilean transformations the so-called dilations and expansions (see § 2), 
we need to extend the transformation laws (5.4) and ( 5 . 5 ) .  Under infinitesimal transfor- 
mations (2.6), it is not difficult (Hussin and Sinzinkayo 1985) to obtain the new laws 

E’ (x ‘ ,  t ’ )  = [ l  -$(a +2ct)]E(x, t ) +  8 x E ( x ,  t ) +  ( U  - CX) x B(x, t )  
(5.7) 

B ~ X ‘ ,  t’) = [ I  -(. + 2 c t ) p ( x ,  t )  + e x ~ ( x ,  t )  
and 

V ’ ( X ‘ ,  t ’ )  = [l  -(a +2ct)] V ( X ,  t )  - ( U  - CX) * A(x ,  t )  

A‘(x’ ,  t ’ ) = [ l  -f(.+2ct)]A(x, t ) + O x A ( x ,  t )  
(5.8) 

ensuring the invariance of equations (5.1) and (5.2) under such Schrodinger transforma- 
tions if the charge and current densities transform according to 

p ’ ( x ’ ,  t’)=[1-2(a+2ct)]p(x,  t ) - (U-cx)  . j ( x ,  t )  

j ‘ ( x ‘ ,  t f )=[1-$(a+2ct)] j (x ,  t ) + e x j ( x ,  t ) .  
(5 .9 )  

We point out that under the Schrodinger group, the potential fields V and A 
transform like the derivatives (a, and -V) but not the densities p and j .  In the relativistic 
conformal context this result is completely similar due to the fact that ( V ,  A )  and (p ,  j )  
are not the same objects geometrically speaking: (V, A )  is a 1-form while ( p ,  j )  appears 
as a 3-form in Minkowski spacetime. 
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Inside the Schrodinger context and more particularly inside this Schrodinger 
electromagnetism, we can get invariance conditions on ‘electromagnetic’ fields and 
potentials. These conditions are expressed in infinitesimal form: 

(5.10) ~ E ( x ,  t )  E ;(a + 2 c t ) E  - e x E - ( U  - CX) x B +  9 E  = 0 

and 
6B(x ,  t )  = (a + 2 c t ) B -  8 x B +  9 B  = 0 (5.11) 

where 
9 = ba, + 0 .  v + e ( X  x v)  - t u .  v + a (  ta, +Ix. v)  + c t (  t a ,  + x -  v).  
For constant and uniform fields, we immediately obtain from (5.10): 

(5.12) 

( a  + 2ct )B2 = 0 (5.13) 

so that if we deal with the magnetic limit, we have to choose a = c = 0. In conclusion, 
the symmetry is the one of Galilei’s electromagnetism. The invariance conditions on 
potentials are 

and (5.14) 

Then in the constant and uniform case, we get the same results as in the Galilei context. 
Let us now determine the fields ( ( E ,  B )  and (V ,  A ) )  invariant under the maximal 

subalgebras (listed in table 2 ) .  We immediately deduce that only the maximal sub- 
algebra f, = so(3)0s1(2, R) can admit a non-trivial ‘electromagnetic’ field. This case 
is very well known (Jackiw 1980, Horvathy 1983, D’Hoker and Vinet 1984, 1985): the 
most general field is 

E = Ex/r4  B = Bx/r3 .  (5.15) 
Otherwise, only two of the maximal subalgebras admit non-trivial invariant ‘4-vectors’. 
Indeed, for the subalgebra f, we have 

V =  d / r 2  A = O  (5.16) 

~ V ( X ,  t )  ( LY + 2ct) V +  ( U  - CX) A + 9 V =  0 

SA( x, t )  f( a + 2ct )A - 0 x A + 9 A  = 0. 

while for the subalgebra n 0 f,, we obtain 

v =  &/(a+ t 2 )  A = O .  (5.17) 
These results are the same as those obtained in 0 4. 

Finally, if we consider the six-dimensional non-maximal subalgebra of sch, gener- 
ated by { J 3 ,  C, K, P3} ,  it does admit an invariant ‘electromagnetic’ field which is 
explicitly obtained in the form 

(5.18) 
Let us make some comments about the physical interpretation of the fields (5.15) 

and (5.18) (which are solutions of equations (5.1) and (5.2)). Firstly, let us insist on 
the fact that such ‘electromagnetic’ non-constant fields admit symmetry algebras of 
maximal dimension equal to six inside the Schrodinger algebra. Secondly, for the field 
(5.19, we evidently recognise the field of the magnetic monopole-already discussed 
in the Schrodinger context (Jackiw 1980, Horvathy 1983, D’Hoker and Vinet 1984, 
1985)-and an electric field deriving from an r-2 scalar potential (D’Hoker and Vinet 
1984, 1985). Finally, the invariant field (5.18) derives from the potential 

v=o  A = ( - m y / 2 t 2 ,  mx /2 t2 ,  0) (5.19) 

E = ( - m y / t 3 ,  m x / t 3 ,  0) I? = ( o , O ,  m /  t ’ ) .  
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which admits a symmetry subalgebra of the field generated by { J 3 ,  K , ,  C, 5). In such 
a case, let us recall that for the missing field symmetries we can compensate the 
non-invariance by introducing so-called (Janner and Janssen 197 1) compensating gauge 
transformations W defined by (Beckers and Hussin 1983a, b) 

a,W=-6V V W =  -6A. (5.20) 

Here, the non-constant transformations W are explicitly 

WK, = tA, WK, = tA,. (5.21) 

6. Comments 

We first notice that the results of 0 9  4 and 5 are evidently in complete agreement. They 
show that no non-trivial F exists when the dimension of the symmetry group is greater 
than six, a property very easily deduced from the infinitesimal approach. In the G ,  
and G, cases, we get two physically interesting results. 

(i) The G, = SO(3) x SL(2, R) maximal subgroup gives the expected results at the 
level of the magnetic field (Jackiw 1980, Horvathy 1983, Hussin and Sinzinkayo 1985) 
and its magnetic monopole context as well as at the level of the electric field (D’Hoker 
and Vinet 1984, 1985, Hussin and Sinzinkayo 1985). 

(ii) The G, subgroup, a non-maximal one but a common subgroup (of dimension 
6) of two maximal ones (G3 and G 5 ) ,  is a specific case showing that there exist 
invariant non-constant electromagnetic fields other than Coulomb-like fields which 
satisfy the equations of Schrodinger’s electromagnetism. 

Secondly, we insist on the G6 case from the point of view of compensating gauge 
transformations, subsymmetries of the potentials with respect to those of the field and, 
consequently, on non-trivial extensions in correspondence with the explicit forms of 
constants of motion (Beckers and Hussin 1984). In such a context, let us mention the 
six constants of motion issued from the corresponding realisation of the extended 
subalgebra. These elements are based on the results (5.19)-(5.21) and we obtain 

J3 = ( x x p ) + f i cr3 K3 = - tp3+  mz 
K ,  = - tp, + mx + e W K ,  

p3 = P 3  C = t [ t H p - f x . p + ( 3 i / 2 ) ] + ( m / 2 ) x 2  

K 2  = - rp2 + my + e W K 2  (6.1) 

where HP is the Pauli Hamiltonian 

Hp= (1/2m)(p+eA)’-(e/2m)B. U. (6.2) 
Thirdly, let us just mention that if invariant (0,2)-symmetric tensors S can be 

determined from the global point of view (see § 4), we know that in the Newtonian 
spacetime they have no direct meaning as metric tensors in contradiction with respect 
to the relativistic cases developed in BHPW. 

Finally, let us complete our comments in connection with Schrodinger’s electromag- 
netism by pointing out that the so-called electric limit (Le Bellac and LCvy-Leblond 
1973) can in principle be studied through the infinitesimal method as we have worked 
out the magnetic one, but not through the global method as is clear from geometrical 
considerations. Such a remark asks for complementary comments actually under study: 
let us only mention here that forms correspond to covariant tensors and are ad hoc 
geometrical objects with respect to the global approach when the magnetic limit is 
taken into consideration but not the electric limit. 
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