On non-relativistic conformal symmetries and invariant tensor fields

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 193471
(http://iopscience.iop.org/0305-4470/19/17/014)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 14:56

Please note that terms and conditions apply.

On non-relativistic conformal symmetries and invariant tensor fields

V Hussin $\dagger \ddagger$ and M Jacques§
+ Physique Théorique et Mathématique, Institut de Physique au Sart Tilman B.5, Université de Liège, B-4000 Liège 1 , Belgium
§ Institut de Physique Théorique, Université Catholique de Louvain, 2 Chemin du Cyclotron, B-1348 Louvain-la-Neuve, Belgium

Received 13 November 1985

Abstract

The largest symmetry group of the Schrödinger equation, the so-called Schrödinger group, is analysed in connection with invariant 2 -forms, 1 -forms and (0,2)-symmetric tensors through the Beckers-Harnad-Perroud-Winternitz global method developed in the relativistic conformal context. Invariant fields and potentials are obtained and discussed in the physical context of Schrödinger electromagnetism through the corresponding infinitesimal method. Specific attention is paid to magnetic monopole dynamical symmetries. These results are obtained in correspondence with the subalgebra classification determined by using the Patera-Winternitz-Zassenhaus algorithm. The accent is put on the maximal subalgebras of the Schrödinger algebra.

1. Introduction

Since the BHPW (Beckers et al 1978) contribution on tensor fields invariant under subgroups of the conformal group of spacetime, numerous extensions and applications of the method have been published in the relativistic context. In particular, different results have been derived on gauge fields (Harnad and Vinet 1978, Harnad et al 1979, Vinet 1981, Doneux et al 1982, Antoine and Jacques 1984), solutions to Yang-Mills equations (Yang and Mills 1954), on (Dirac) spinor fields (Beckers et al 1980, Légaré 1983, Légaré and Harnad 1984), etc (Beckers and Jaminon 1978, Beckers et al 1979, Beckers and Sinzinkayo 1982, Beckers and Hussin 1983a, b, 1984, Sinzinkayo and Demaret 1985), besides tensor fields such as 2 -forms (electromagnetic tensors), 1 -forms (four potentials) and rank-two symmetric tensors (metric tensors, for example) studied in BHPW.

Interesting structures such as $O(4), O(4) \times O(2), O(3) \times O(2,1)$ seen as subgroups of the conformal group of spacetime did play a prominent role in particle physics (see BHPW) as well as in classical electrodynamics (Englefield 1972) and invariant objects under such structures gave very attractive information for mathematical physicists.

Such studies do use fundamental tools of differential geometry (Lie derivatives, 2and 1 -forms, ..., fibre bundle techniques, ...) (Kobayashi and Nomizu 1963) as well
\ddagger Chargé de recherches au FNRS (Belgique).
as interesting information issued from classification of subalgebras essentially obtained following the pWZ algorithm (Patera et al 1975). Let us recall that the pWZ work has given a lot of mathematical results on maximal and non-maximal subalgebras of the conformal algebra as well as of physical results (Beckers et al 1977, Boyer et al 1976) through applications to wave equations with interaction. In particular, the pwz algorithm combined with tensor fields invariant under the Poincaré subalgebras has led to the study of minimal electromagnetic coupling schemes (Beckers and Hussin 1983a, b) and to the study of constants of motion (Beckers and Hussin 1984, Hussin and Sinzinkayo 1985).

All these approaches and studies can, in the relativistic case, be seen as specific contributions issued from the analysis of the conformal group of spacetime and of its (maximal up to conjugacy under the Poincaré group) subgroups where the BHPW work plays a central role. The question is: 'Do we know the corresponding information at the non-relativistic level?'. The answer is negative and the main purpose of this paper will be to study and to complete this non-relativistic domain.

Let us first recall that in the non-relativistic context, Hagen (1972) and Niederer (1972) have put forward the largest symmetry group of the Schrödinger equation leading to the 'maximal kinematical invariance group of the free Schrödinger equation' or to the so-called 'Schrödinger group'. Hereafter we will call it the Schrödinger group SCH_{3} and its algebra will be denoted by sch_{3}, the number 3 referring to the three spatial dimensions (see also Roman et al 1972, Barut 1973, Niederer 1973, 1974). It corresponds to the conformal group of spacetime in the relativistic case, so that we can also speak about a conformal Galilean symmetry group. Such a structure and some of its substructures have already been studied (Burdet and Perrin 1972, 1975, Burdet et al 1973). More particularly the case of SCH_{2} has been analysed (Burdet et al 1978) through the Pwz algorithm in order to get all the subalgebras of sch_{2} (and of its central extension $\widetilde{s c h}_{2}$), while the corresponding analysis of sch_{3} is missing!

Let us secondly come back to the question asked above and consequently propose to solve the missing case sch_{3}. This purpose will be developed in the following but by limiting ourselves to the same level as the one developed in the relativistic case in BHPW. Effectively, we want to get the maximal (up to conjugacy under the Galilei algebra) subalgebras of sch_{3} and then to apply invariance considerations on different tensors (2 -forms, 1 -forms and symmetric (0,2)-tensors, hereafter called F, A and S respectively). Using global and infinitesimal methods, these invariant tensors will be determined and the non-trivial results will be related to physical situations. In particular the interesting case of magnetic monopoles in a non-relativistic context will be recovered and connected to recent works (Jackiw 1980, Horvathy 1983, D'Hoker and Vinet 1984, 1985). We also will consider a six-dimensional non-maximal subalgebra leading to non-trivial electromagnetic considerations.

Our paper is organised as follows. In § 2 we just recall some fundamental elements on the Schrödinger group of three-dimensional space and time and its algebra. Section 3 is devoted to the construction of the maximal subalgebras of sch_{3} through the use of the pWZ algorithm up to conjugacy under the Galilei algebra. Then we essentially study in $\S 4$ the tensor fields F, A and S invariant under those maximal subalgebras by the use of the global method displayed in BHPW. Section 5 contains specific information on Galilei's and Schrödinger's electromagnetisms and more particularly on associated transformation laws of the fields F and A as well as on their invariance conditions issued from the infinitesimal method. The comparison with the results of $\S 4$ is realised within the physical context of Schrödinger's electromagnetism. Finally
in § 6 we present some comments, in particular, in connection with physical constants of motion.

In order to avoid some confusion, let us already mention here that all physical notions referring to 'electromagnetism' are necessarily seen in the non-relativistic context and more particularly in the so-called magnetic limit of the Maxwell theory (Le Bellac and Lévy-Leblond 1973).

2. The Schrödinger group and its algebra

It is well known (Hagen 1972, Niederer 1972) that the maximal kinematical invariance group of the free Schrödinger equation-the so-called Schrödinger group SCH_{3}-is a twelve-parameter Lie group corresponding to Galilean transformations supplemented by dilations and expansions. A 5×5 matrix representation of SCH_{3} is given by

$$
g=\left(\begin{array}{ll}
R & T \tag{2.1}\\
0 & L
\end{array}\right)
$$

where R is a 3×3 matrix of $\operatorname{SO}(3), T=(v, a)$ is a 3×2 real matrix and L is a 2×2 matrix of $\operatorname{SL}(2, \mathbb{R}), L=\left(\begin{array}{ll}\varepsilon & \beta \\ \gamma & \delta\end{array}\right)(\varepsilon \delta-\beta \gamma=1, \varepsilon, \beta, \gamma, \delta \in \mathbb{R})$. These matrices do act on elements $u=\left\{u^{1}, u^{2}, u^{3}, u^{4}, u^{5}\right\}$ of \mathbb{R}^{5} such as

$$
\begin{equation*}
u^{\prime}=g u \tag{2.2}
\end{equation*}
$$

The action of the Schrödinger group on Newtonian spacetime $\left(\mathbb{R}^{3+1}\right)$ events (x, t) is obtained through the correspondence ($u^{5} \neq 0$)

$$
\begin{equation*}
x^{i}=u^{i} / u^{5} \quad(i=1,2,3) \quad t=u^{4} / u^{5} \tag{2.3}
\end{equation*}
$$

Conversely, to each event (\boldsymbol{x}, t) on \mathbb{R}^{3+1}, we associate a ray in \mathbb{R}^{5} by the relation

$$
\begin{equation*}
(x, t) \rightarrow(\lambda x, \lambda t, \lambda) \quad \lambda \neq 0 \tag{2.4}
\end{equation*}
$$

two points u and v in \mathbb{R}^{5} being equivalent if $u=\lambda v$ for some $\lambda \neq 0$. The transformation law on (\boldsymbol{x}, t) is now given by

$$
\begin{equation*}
x^{\prime}=R x+v t+a /(\gamma t+\delta) \quad t^{\prime}=\varepsilon t+\beta /(\gamma t+\delta) \quad(t \neq-\delta / \gamma) \tag{2.5}
\end{equation*}
$$

The infinitesimal version of (2.5) is then

$$
\begin{align*}
& \boldsymbol{x}^{\prime}=\boldsymbol{x}+\boldsymbol{\theta} \times \boldsymbol{x}+\boldsymbol{v} t+\frac{1}{2} \alpha \boldsymbol{x}+c t \boldsymbol{x}+\boldsymbol{a} \tag{2.6}\\
& t^{\prime}=t+\alpha t+c t^{2}+b
\end{align*}
$$

where we can see that the effect of dilations (α) is not the same on spatial and time coordinates.

The Lie algebra sch ${ }_{3}$ can be written as the semi-direct sum (Burdet et al 1978)

$$
\begin{equation*}
\mathrm{sch}_{3}=\left(\mathrm{t}_{3} \oplus \mathrm{t}_{3}^{*}\right) \square(\mathrm{so}(3) \oplus \mathrm{sl}(2, \mathbb{R})) \tag{2.7}
\end{equation*}
$$

and a basis of generators is given by \boldsymbol{K} and \boldsymbol{P} for the Abelian algebras t_{3} and t_{3}^{*}, by \boldsymbol{J} for so(3) and by H, D, C for $\mathrm{sl}(2, \mathbb{R})$. These generators are respectively associated with pure Galilean transformations (\boldsymbol{v}), spatial translations (\boldsymbol{a}), spatial rotations $(\boldsymbol{\theta})$,
time translations (b), dilations (α) and expansions (or one-dimensional special conformal transformations) (c). The commutation relations are given by

$$
\left.\begin{array}{l}
{\left[P_{k}, P_{l}\right]=\left[K_{k}, K_{l}\right]=\left[K_{k}, P_{l}\right]=0} \\
{\left[J_{k}, J_{l}\right]=\mathrm{i} \varepsilon_{k l m} J_{m}}
\end{array}\right] \begin{array}{lll}
{[H, D]=\mathrm{i} H} & {[H, C]=2 \mathrm{i} D} & {[D, C]=\mathrm{i} C} \\
{\left[H, J_{k}\right]=0} & {\left[D, J_{k}\right]=0} & {\left[C, J_{k}\right]=0} \\
{\left[J_{k}, P_{l}\right]=\mathrm{i} \varepsilon_{k l m} P_{m}} & {\left[J_{k}, K_{l}\right]=\mathrm{i} \varepsilon_{k l m} K_{m}} \\
{\left[H, P_{k}\right]=0} & {\left[H, K_{k}\right]=\mathrm{i} P_{k}} \\
{\left[D, P_{k}\right]=-\frac{1}{2} \mathrm{i} P_{k}} & {\left[D, K_{k}\right]=\frac{1}{2} \mathrm{i} K_{k}} \tag{2.12}\\
{\left[C, P_{k}\right]=-\mathrm{i} K_{k}} & {\left[C, K_{k}\right]=0 .}
\end{array}
$$

A specific realisation of the twelve generators can be explicitly given. We have

$$
\begin{array}{llrl}
\boldsymbol{P}=-\mathrm{i} \boldsymbol{\nabla} & \boldsymbol{K}=\mathrm{i} t \boldsymbol{\nabla} & \boldsymbol{J}=-\mathrm{i} \boldsymbol{x} \times \boldsymbol{\nabla} & H=\mathrm{i} \partial_{t} \\
D=\mathrm{i}\left(t \partial_{t}+\frac{1}{2} \boldsymbol{x} \cdot \boldsymbol{\nabla}\right) \quad & C=\mathrm{i}\left(t^{2} \partial_{t}+t \boldsymbol{x} \cdot \boldsymbol{\nabla}\right) . & \tag{2.13}
\end{array}
$$

Let us finally recall that the Schrödinger group admits a non-trivial central extension by \mathbb{R} called $\widetilde{\mathrm{SCH}}_{3}$ and that the corresponding algebra $\widetilde{\mathrm{sch}}_{3}$ is obtained by defining new generators K and C realised as

$$
\begin{equation*}
\boldsymbol{K}=\mathrm{i} t \nabla+m \boldsymbol{x} \quad C=\mathrm{i}\left(t^{2} \dot{\partial}_{t}+t \boldsymbol{x} \cdot \nabla\right)+(m / 2) \boldsymbol{x}^{2} \tag{2.14}
\end{equation*}
$$

The commutation relations of $\overline{\operatorname{sch}}_{3}$ are essentially given by (2.8)-(2.12) except the ones between K_{i} and P_{k} which are replaced by

$$
\begin{equation*}
\left[K_{i}, P_{k}\right]=\mathrm{i} m \delta_{i k} \tag{2.15}
\end{equation*}
$$

3. Maximal subalgebras of sch $_{3}$

Here let us classify the maximal subalgebras of the Schrödinger algebra sch_{3} into conjugacy classes under the Galilei group. In order to do this we have to determine the subalgebras, up to conjugacy, of sch_{3} following the pwz classification method (Patera et al 1975) but since we are interested in the maximal ones we effectively have to determine only some of them as will be clear in the following.

Let us recall (Burdet et al 1978) that the algebra sch is a semi-direct sum of $n \square \mathrm{f}$ where $n=t_{3} \oplus t_{3}^{*}$ is an Abelian ideal of dimension 6 and f is identified with so $(3) \oplus$ $\mathrm{sl}(2, \mathbb{R})$ as is clear from (2.6). Now let us summarise the classification method (Patera et al 1975). Firstly, we classify all the subalgebras f_{i} of f into conjugacy classes under the Galilei group. Secondly, we search for the subspaces $n_{i k}$ of n invariant for each f_{i}. Thirdly, the splitting subalgebras of sch_{3} which are the semi-direct sums $n_{i k} \square \mathrm{f}_{i}$ are constructed and finally the non-splitting subalgebras can also be obtained. The only point that we have to solve completely is the first one ($\$ 3.1$). Then we have to consider only some invariant subspaces $n_{i k}$ in order to find all the non-conjugated maximal subalgebras of sch_{3}, these ones being splitting subalgebras only (§3.2).

3.1. Conjugacy classes of subalgebras of f under the Galilei group

The only non-trivial subalgebra of so $(3)=\{J\}$ is evidently so(2) (generated by J_{3} for example). Then, let us search for non-equivalent subalgebras of $\operatorname{sl}(2, \mathbb{R})$ generated by H, D and C satisfying (2.10). The more general combination of these three generators gives the new one

$$
\begin{equation*}
Q=\mu H+\nu D+\tau C \quad \mu, \nu, \tau \in \mathbb{R} \tag{3.1}
\end{equation*}
$$

Here, the conjugacy under time translations, contained in the Galilei group, is relevant. Indeed, we have

$$
\begin{equation*}
\exp (\mathrm{i} b H) Q \exp (-\mathrm{i} b H)=\left(\mu-\nu b+\tau b^{2}\right) H+(\nu-2 \tau b) D+\tau C \tag{3.2}
\end{equation*}
$$

Let us discuss this result.
(i) If $\mu, \nu, \tau \neq 0$, we can choose $\tau=1$. Then, for $b=\frac{1}{2} \nu, Q$ is equivalent to $C+\sigma H$, $\sigma \in \mathbb{R}$. Otherwise, if b is such that $\mu-\nu b+b^{2}=0$ then Q is equivalent to $C+\rho D, \rho \in \mathbb{R}$. If $\mu, \tau \neq 0$ and $\nu=0$ (with $\tau=1$), $C+\sigma H$ becomes equivalent to $C+\rho D, \rho \in \mathbb{R}$. If ν, $\tau \neq 0$ and $\mu=0$ (with $\tau=1$), $C+\nu D$ becomes equivalent to $C+\sigma^{2} H, \sigma \in \mathbb{R}$. If $\mu, \nu=0$ and $\tau \neq 0$, we recover the generator C.
(ii) If $\tau=0$ and $\mu, \nu \neq 0$, we can choose $\nu=1$ so that, with $b=\mu, Q$ becomes equivalent to D. If $\tau=0$ and $\nu=0$, we recover H.

Thus, the non-equivalent subalgebras of dimension 1 of $\mathrm{sl}(2, \mathbb{R})$ are generated by $\{H\},\{D\},\{C\}$ and $\{C+\sigma H, \sigma \in \mathbb{R}\}$. Using this result we can easily construct the subalgebras of dimension 2 : there are only two, i.e. $\{H, D\}$ and $\{D, C\}$. The algebra $\operatorname{sl}(2, \mathbb{R})$ admits two non-trivial subalgebras of dimension 2 and three of dimension 1 as well as an infinite family of dimension 1 .

By combining this information we obtain all the subalgebras of f listed in table 1.

Table 1. Non-equivalent subalgebras of $f \equiv \operatorname{so}(3) \oplus \operatorname{sl}(2, \mathbb{R})$.

Dimension	Notation and generators
6	$\mathrm{f}_{1}=\{J, H, D, C\}$
5	$\mathrm{f}_{2}=\{\boldsymbol{J}, H, D\}, \mathrm{f}_{3}=\{\mathrm{J}, D, C\}$
4	$\begin{aligned} & \mathrm{f}_{4}=\{J, H\}, \mathrm{f}_{5}=\{J, D\}, \mathrm{f}_{6}=\{J, C\}, \\ & \mathrm{f}_{7}=\{J, C+\sigma H, \sigma \neq 0\}, \mathrm{f}_{8}=\left\{J_{3}, H, D, C\right\} \end{aligned}$
3	$\begin{aligned} & \mathrm{f}_{\mathrm{g}}=\{J\}, \mathrm{f}_{10}=\left\{J_{3}, H, D\right\} \\ & \mathrm{f}_{11}=\left\{J_{3}, D, C\right\}, \mathrm{f}_{12}=\{H, D, C\} \end{aligned}$
2	$\begin{aligned} & \mathrm{f}_{13}=\left\{J_{3}, H\right\}, \mathrm{f}_{14}=\left\{J_{3}, D\right\}, \mathrm{f}_{15}=\left\{J_{3}, C\right\}, \\ & \mathrm{f}_{16}=\left\{J_{3}, C+\sigma H, \sigma \neq 0\right\}, \mathrm{f}_{11}=\{H, D\}, \\ & \mathrm{f}_{18}=\{D, C\}, \mathrm{f}_{19}=\left\{J_{3}+\eta D, H, \eta \neq 0\right\}, \\ & \mathrm{f}_{20}=\left\{J_{3}+\eta D, C, \eta \neq 0\right\} \end{aligned}$
1	$\begin{aligned} & \mathrm{f}_{21}=\left\{J_{3}\right\}, \mathrm{f}_{22}=\{H\}, \mathrm{f}_{23}=\{D\}, \mathrm{f}_{24}=\{C\}, \\ & \mathrm{f}_{25}=\{C+\sigma H, \sigma \neq 0\}, \mathrm{f}_{26}=\left\{J_{2}+\tau H, \tau \neq 0\right\}, \\ & \mathrm{f}_{27}=\left\{J_{3}+\eta D, \eta \neq 0\right\}, \mathrm{f}_{28}=\left\{J_{3}+\rho C, \rho \neq 0\right\}, \\ & \mathrm{f}_{29}=\left\{J_{3}+\tau(C+\sigma H), \sigma, \tau \neq 0\right\} \end{aligned}$

3.2. Non-equivalent maximal subalgebras of sch $_{3}$

With the preceding results, we can see that the only maximal subalgebras of so(3) \oplus $\operatorname{sl}(2, \mathbb{R})$ are the algebras $\mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}, \mathrm{f}_{7}$ and f_{8}. Moreover, $n \equiv\{\boldsymbol{K}, \boldsymbol{P}\}$ and $n_{0}=\{0\}$ are evidently two particular invariant subspaces for n so that the algebras $n_{0} \square \mathrm{f}_{1}, n \square \mathrm{f}_{2}$, $n \square \mathrm{f}_{3}, n \square \mathrm{f}_{7}$ and $n \square \mathrm{f}_{8}$ are splitting subalgebras of sch_{3}. These are the only nonequivalent maximal subalgebras of sch_{3}. Indeed all the other splitting or non-splitting ones are subalgebras of at least one among the maximal ones. These algebras, their corresponding dimensions and their bases of generators are listed in table 2.

Table 2. Maximal subalgebras of sch_{3}.

Notation	Dimension	Generators
f_{1}	6	$\{\boldsymbol{J}, H, D, C\}$
$n \square \mathrm{f}_{2}$	11	$\{\boldsymbol{J}, \boldsymbol{H}, D, \boldsymbol{K}, \boldsymbol{P}\}$
$n \square \mathrm{f}_{3}$	11	$\{J, D, C, \boldsymbol{K}, \boldsymbol{P}\}$
$n \square \mathrm{f}_{7}$	10	$\{\boldsymbol{J}, \boldsymbol{C}+\boldsymbol{\sigma}, \boldsymbol{K}, \boldsymbol{P}, \sigma \neq 0\}$
$n \square \mathrm{f}_{8}$	10	$\left\{J_{3}, H, D, \boldsymbol{C}, \boldsymbol{K}, \boldsymbol{P}\right\}$

Let us make a few comments about the structure of these algebras. The first one is the algebra $f=s o(3) \oplus \operatorname{sl}(2, \mathbb{R})$ itself. Such an algebra also appears as maximal into the conformal algebra. It has already received much attention in the literature in the Schrödinger (Jackiw 1980, Horvathy 1983, D'Hoker and Vinet 1984, 1985) as well as in the conformal (Beckers et al 1978) contexts. For the second one $n \square f_{2}$ we recognise the serii-direct sum of the Galilei algebra with the one-dimensional algebra $\{D\}$ associated with dilations. It appears maximal in the Schrödinger algebra as the similitude algebra $\operatorname{sim}(3,1)$ is maximal (Beckers et al 1978) in the algebra of the conformal group of spacetime. The third one, denoted $n \square f_{3}$, appears here as nonequivalent to the previous one since we have conjugated by the Galilei group and not by the Schrödinger group itself. The fourth subalgebra is clearly $n \square(\operatorname{so}(3) \oplus \operatorname{so}(2))$ while the fifth one is $n \square(\operatorname{so}(2) \oplus \operatorname{sl}(2, \mathbb{R}))$.

In correspondence with these five maximal subalgebras obtained in table 2 , we get by exponentiation five maximal subgroups respectively denoted $G_{1} \equiv S O(3) \otimes \operatorname{SL}(2, \mathbb{R})$, $\mathrm{G}_{2}, \mathrm{G}_{3}, \mathrm{G}_{4}, \mathrm{G}_{5}$ which will be of interest in $\S 4$.

As a final comment, let us mention, besides the maximal subalgebras and subgroups, one of the six-dimensional non-maximal subalgebras of sch $_{3}$ generated by $\left\{J_{3}, K, P_{3}, C\right\}$ which is contained in the two maximal subalgebras $n \square \mathrm{f}_{3}$ and $n \square \mathrm{f}_{8}$. The corresponding group will be denoted G_{6} and will also be considered in the following sections.

4. Invariant tensor fields: global method

Let us now determine, by using the global method displayed in BHPw, invariant tensor fields under the five maximal subgroups of SCH_{3} and one of its six-dimensional non-maximal subgroups ($\S 4.1-4.6$). We intend to consider 1 -forms, 2 -forms and symmetric (0,2)-tensor fields. Due to the linear action of SCH_{3} on \mathbb{R}^{5}, we first determine such invariant fields on (at most four-dimensional) submanifolds of \mathbb{R}^{5} and then project them back to the Newtonian spacetime \mathbb{R}^{3+1}.

Let us now very briefly review the global method (Beckers et al 1978) in order to introduce the notations in the Schrödinger context. Let p_{0} be a generic point in \mathbb{R}^{5} and G a subgroup of SCH_{3}. The orbit of G through p_{0} is the submanifold of \mathbb{R}^{5} defined by

$$
\begin{equation*}
G p_{0}=\left\{p \in \mathbb{R}^{5} \mid \exists g \in G: p=g p_{0}\right\} \tag{4.1}
\end{equation*}
$$

Here, the orbit structure of \mathbb{R}^{3+1} under the action of G is particularly simple: up to singular (lower-dimensional) submanifolds, the whole space is actually the orbit of G through p_{0}. In the following, we thus only consider the global method for tensor fields defined on one orbit. Let G_{0} be the isotropy subgroup of G at p_{0}, i.e.

$$
\begin{equation*}
\mathrm{G}_{0}=\left\{g \in \mathrm{G} \mid g p_{0}=p_{0}\right\} . \tag{4.2}
\end{equation*}
$$

With respect to the coordinate system $\left\{u^{a}\right\}$ introduced in $\S 2$, all G-invariant (r, s)-tensor fields ψ on $G p_{0}$ in \mathbb{R}^{5} will be obtained by carrying out the following two steps.
(i) Solve the isotropy condition at $p_{0}: \forall g_{0} \in \mathrm{G}_{0}$

$$
\begin{equation*}
\psi_{j_{1} \ldots j_{s}, r_{s}}^{r_{0}}\left(p_{0}\right)=\left(g_{0}\right)_{k_{1}}^{i_{1}^{2}} \ldots\left(g_{0}\right)_{k_{r}}^{i_{r}}\left(g_{0}^{-1}\right)_{j_{1}}^{l_{1}} \ldots\left(g_{0}^{-1}\right)_{j_{s}^{s}}^{l_{s}} \psi_{l_{1} \ldots l_{s}^{\prime} \ldots}^{k_{s}}\left(p_{0}\right) \tag{4.3}
\end{equation*}
$$

(ii) Apply the group transformation to get the field at any point of the orbit:
$\psi_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{s}}(p)=\psi_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{s}}\left(g p_{0}\right)=(g)_{k_{1}}^{i_{1}} \ldots(g)_{k_{r}}^{i_{k_{2}}}\left(g^{-1}\right)_{j_{1}}^{l_{1}} \ldots\left(g^{-1}\right)_{j_{s}}^{l_{s}} \psi_{l_{1} \ldots l_{s}}^{k_{1} \ldots k_{r}}\left(p_{0}\right)$.
The tensor fields we are interested in can be respectively written as

$$
\begin{equation*}
A=A_{a} \mathrm{~d} u^{a} \quad F=F_{a b} \mathrm{~d} u^{a} \wedge \mathrm{~d} u^{b} \quad S=S_{a b} \mathrm{~d} u^{a} \mathrm{~d} u^{b} \quad(a, b=1, \ldots, 5) . \tag{4.5}
\end{equation*}
$$

Using an obvious matrix notation for A, F and S, equations (4.3) and (4.4) become
$A\left(p_{0}\right)=g_{0}^{-1 T} A\left(p_{0}\right) \quad F\left(p_{0}\right)=g_{0}^{-1 T} F\left(p_{0}\right) g_{0}^{-1} \quad S\left(p_{0}\right)=g_{0}^{-1 T} S\left(p_{0}\right) g_{0}^{-1}$
and

$$
\begin{array}{ll}
A(p)=A\left(g p_{0}\right)=g^{-1 T} A\left(p_{0}\right) & F(p)=F\left(g p_{0}\right)=g^{-1 T} F\left(p_{0}\right) g^{-1} \\
S(p)=S\left(g p_{0}\right)=g^{-1 T} S\left(p_{0}\right) g^{-1} . \tag{4.7}
\end{array}
$$

Let us consider the different cases corresponding to the subgroups G_{1}, \ldots, G_{6} and let us only enter into the details of the case $G_{1} \equiv \operatorname{SO}(3) \otimes \operatorname{SL}(2, \mathbb{R})$.

4.1. $G_{1}=S O(3) \otimes S L(2, \mathbb{R})$

An element g of G_{1} is given by (2.1) where $T=0$. Choosing $p_{0}=\left(\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right)^{\mathrm{T}}$, an arbitrary point p of the orbit is given by

$$
p=g p_{0}=\left(\begin{array}{l}
\hat{n} \tag{4.8}\\
\beta \\
\delta
\end{array}\right) \sim\left(\begin{array}{c}
\hat{n} / \delta \\
\beta / \delta \\
1
\end{array}\right)
$$

where the unit vector \hat{n} is the first column of R. The isotropy subgroup G_{0} contains all the elements $g_{0} \in G_{1}$ such that

$$
R=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{4.9}\\
0 & \cos \varphi & -\sin \varphi \\
0 & \sin \varphi & \cos \varphi
\end{array}\right) \quad L=\left(\begin{array}{cc}
1 & 0 \\
\gamma & 1
\end{array}\right)
$$

In \mathbb{R}^{5}, the orbit is defined by

$$
\begin{equation*}
\left(u^{1}\right)^{2}+\left(u^{2}\right)^{2}+\left(u^{3}\right)^{2}=1 \quad u^{5} \neq 0 \tag{4.10}
\end{equation*}
$$

The cotangent space for the orbit is then given by

$$
\begin{equation*}
u^{1} \mathrm{~d} u^{1}+u^{2} \mathrm{~d} u^{2}+u^{3}, \mathrm{~d} u^{3}=0 \tag{4.11}
\end{equation*}
$$

which implies, in particular, that

$$
\begin{equation*}
\mathrm{d} u^{1} \mid p_{0}=0 \tag{4.12}
\end{equation*}
$$

Using (2.3) and (4.10), we easily get the correspondence between the orbit in \mathbb{R}^{5} and \mathbb{R}^{3+1} :

$$
\begin{equation*}
u^{5}=1 / r \quad u^{4}=t / r \quad u^{i}=x^{i} / r \quad(i=1,2,3) \tag{4.13}
\end{equation*}
$$

where $r^{2}=\sum_{i=1}^{3}\left(x^{i}\right)^{2}$.
Let us now determine the invariant 1 -forms. With (4.12), we have

$$
\begin{equation*}
A\left(p_{0}\right)=\sum_{i=2}^{5} A_{i} \mathrm{~d} u^{i} \tag{4.14}
\end{equation*}
$$

Inserting (4.14) in (4.6) with g_{0} given by (4.9) yields the solution at p_{0} :

$$
\begin{equation*}
A\left(p_{0}\right)=M \mathrm{~d} u^{4} \tag{4.15}
\end{equation*}
$$

for some constant M. Introducing (4.15) in (4.7) yields

$$
\begin{equation*}
A(p)=M\left(\delta \mathrm{~d} u^{4}-\beta \mathrm{d} u^{5}\right)=M\left(u^{5} \mathrm{~d} u^{4}-u^{4} \mathrm{~d} u^{5}\right) \tag{4.16}
\end{equation*}
$$

where we have used (4.8). Now we project A on \mathbb{R}^{3+1} by using (4.13) and finally obtain $A(x, t)=M\left\{(1 / r)\left[(\mathrm{d} t / r)-\left(t / r^{3}\right) x \cdot \mathrm{~d} \boldsymbol{x}\right]+\left(t / r^{4}\right) \boldsymbol{x} \cdot \mathrm{d} \boldsymbol{x}\right\}=M \mathrm{~d} t / r^{2}$.

The invariant 2 -forms F can also be easily determined. With (4.12), $F\left(p_{0}\right)$ does not contain any component along $\mathrm{d} u^{1}$ and (4.6) yields

$$
\begin{equation*}
F\left(p_{0}\right)=M_{1} \mathrm{~d} u^{2} \wedge \mathrm{~d} u^{3}+M_{2} \mathrm{~d} u^{4} \wedge \mathrm{~d} u^{5} \tag{4.18}
\end{equation*}
$$

for some constants M_{1} and M_{2}. Choosing a parametrisation for the rotation matrix R, the evolution law (4.7) yields

$$
\begin{equation*}
F(p)=M_{1} \varepsilon_{i j k} u^{i} \mathrm{~d} u^{j} \wedge \mathrm{~d} u^{k}+M_{2} \mathrm{~d} u^{4} \wedge \mathrm{~d} u^{5} . \tag{4.19}
\end{equation*}
$$

The projection on \mathbb{R}^{3+1} gives the invariant 2-forms

$$
\begin{equation*}
F(x, t)=\left(M_{1} / r^{3}\right) \varepsilon_{i j k} x^{i} \mathrm{~d} x^{j} \wedge \mathrm{~d} x^{k}+\left(M_{2} / r^{4}\right) \mathrm{d} t \wedge(x \cdot \mathrm{~d} \boldsymbol{x}) \tag{4.20}
\end{equation*}
$$

Finally, starting with a symmetric matrix $S\left(p_{0}\right)$, (4.6) yields

$$
\begin{equation*}
S\left(p_{0}\right)=M_{3}\left[\left(\mathrm{~d} u^{2}\right)^{2}+\left(\mathrm{d} u^{3}\right)^{2}\right]+M_{4}\left(\mathrm{~d} u^{4}\right)^{2} \tag{4.21}
\end{equation*}
$$

for some constants M_{3} and M_{4}, while (4.7) yields by using (4.11)

$$
\begin{equation*}
S(p)=M_{3}\left[\left(\mathrm{~d} u^{1}\right)^{2}+\left(\mathrm{d} u^{2}\right)^{2}+\left(\mathrm{d} u^{3}\right)^{2}\right]+M_{4}\left(u^{5} \mathrm{~d} u^{4}-u^{4} \mathrm{~d} u^{5}\right)^{2} \tag{4.22}
\end{equation*}
$$

The projection on \mathbb{R}^{3+1} gives the invariant symmetric $(0,2)$-tensor fields:

$$
\begin{equation*}
S(\boldsymbol{x}, t)=M_{3}\left\{\left[(\mathrm{~d} \boldsymbol{x})^{2} / r^{2}\right]-\left[(\boldsymbol{x} \cdot \mathrm{d} \boldsymbol{x})^{2} / r^{4}\right]\right\}+M_{4} \mathrm{~d} t^{2} / r^{4} \tag{4.23}
\end{equation*}
$$

From now on, we only give the essential features of the other cases.

4.2. G_{2}

An element $g \in G_{2}$ is given by (2.1) where

$$
L=\left(\begin{array}{cc}
\varepsilon & \beta \tag{4.24}\\
0 & 1 / \varepsilon
\end{array}\right)
$$

Choosing $p_{0}=\left(\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right)^{\mathrm{T}}$, the orbit is given by

$$
p=g p_{0}=\left(\begin{array}{c}
\boldsymbol{a} \tag{4.25}\\
\beta \\
1 / \varepsilon
\end{array}\right) \sim\left(\begin{array}{c}
\varepsilon \boldsymbol{a} \\
\varepsilon \beta \\
1
\end{array}\right)
$$

where \boldsymbol{a} is the second column of T. The elements g_{0} of the isotropy subgroup G_{0} are such that $\boldsymbol{a}=0, \beta=0$ and the isotropy conditions (4.6) imply that all invariant tensor fields vanish.

4.3. G_{3}

An element $g \in \mathrm{G}_{3}$ is given by (2.1) where

$$
L=\left(\begin{array}{cc}
\varepsilon & 0 \tag{4.26}\\
\gamma & 1 / \varepsilon
\end{array}\right)
$$

Choosing $p_{0}=\left(\begin{array}{llll}0 & 0 & 0 & 1\end{array} 1\right)^{\mathrm{T}}$, the orbit is given by

$$
p=g p_{0}=\left(\begin{array}{c}
v+\boldsymbol{a} \tag{4.27}\\
\varepsilon \\
\gamma+(1 / \varepsilon)
\end{array}\right) \sim\left(\begin{array}{c}
(\boldsymbol{v}+\boldsymbol{a}) /[\gamma+(1 / \varepsilon)] \\
\varepsilon /[\gamma+(1 / \varepsilon)] \\
1
\end{array}\right)
$$

where v and a are the columns of T. The elements g_{0} of the isotropy subgroup G_{0} are such that $a=-v$ and $\gamma=\varepsilon-(1 / \varepsilon)$. Here too, the isotropy conditions (4.6) imply that all fields vanish.

4.4. G_{4}

An element $g \in G_{4}$ is now given by (2.1) where

$$
L=\left(\begin{array}{cc}
\cos (\sqrt{\sigma} \varphi) & -\sqrt{\sigma} \sin (\sqrt{\sigma} \varphi) \tag{4.28}\\
(1 / \sqrt{\sigma}) \sin (\sqrt{\sigma} \varphi) & \cos (\sqrt{\sigma} \varphi)
\end{array}\right) \quad \sigma \neq 0
$$

Choosing $p_{0}=\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 1\end{array}\right)^{\mathrm{T}}$, an arbitrary point of the orbit is given by

$$
p=g p_{0}=\left(\begin{array}{c}
a \tag{4.29}\\
-\sqrt{\sigma} \sin (\sqrt{\sigma} \varphi) \\
\cos (\sqrt{\sigma} \varphi)
\end{array}\right) \sim\left(\begin{array}{c}
a / \cos (\sqrt{\sigma} \varphi) \\
-\sqrt{\sigma} \tan (\sqrt{\sigma} \varphi) \\
1
\end{array}\right) .
$$

The isotropy subgroup G_{0} contains all the elements $g_{0} \in \mathrm{G}_{4}$ such that $\boldsymbol{a}=0$ and $L=1$. In \mathbb{R}^{5}, the orbit is defined by

$$
\begin{equation*}
\left[\left(u^{4}\right)^{2} / \sigma\right]+\left(u^{5}\right)^{2}=1 \quad u^{5} \neq 0 \tag{4.30}
\end{equation*}
$$

and the cotangent space for the orbit is given by

$$
\begin{equation*}
\left(u^{4} / \sigma\right) \mathrm{d} u^{4}+u^{5} \mathrm{~d} u^{5}=0 \tag{4.31}
\end{equation*}
$$

which, in particular, implies

$$
\begin{equation*}
\left.\mathrm{d} \boldsymbol{u}^{5}\right|_{\infty_{0}}=0 \tag{4.32}
\end{equation*}
$$

The correspondence between the orbit in \mathbb{R}^{5} and \mathbb{R}^{3+1} is

$$
\begin{equation*}
u^{5}=\left[1+\left(t^{2} / \sigma\right)\right]^{-1 / 2} \quad u^{4}=t\left[1+\left(t^{2} / \sigma\right)\right]^{-1 / 2} \quad u^{i}=x^{i}\left[1+\left(t^{2} / \sigma\right)\right]^{-1 / 2} \tag{4.33}
\end{equation*}
$$

The invariant tensor fields under study are then

$$
\begin{align*}
& A(x, t)=M \mathrm{~d} t /\left[1+\left(t^{2} / \sigma\right)\right] \tag{4.34}\\
& F(x, t)=0 \tag{4.35}\\
& S(x, t)=N \mathrm{~d} t^{2} /\left[1+\left(t^{2} / \sigma\right)\right]^{2} \tag{4.36}
\end{align*}
$$

where M and N are arbitrary constants.

4.5. G_{5}

An element $g \in G_{5}$ is given by (2.1) where

$$
R=\left(\begin{array}{ccc}
\cos \varphi & -\sin \varphi & 0 \tag{4.37}\\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Choosing $p_{0}=\left(\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right)^{\mathrm{T}}$, the orbit is given by

$$
p=g p_{0}=\left(\begin{array}{c}
a \tag{4.38}\\
\beta \\
\delta
\end{array}\right) \sim\left(\begin{array}{c}
a / \delta \\
\beta / \delta \\
1
\end{array}\right)
$$

so that the elements g_{0} of the isotropy subgroup G_{0} are given by $\boldsymbol{a}=\mathbf{0}, \beta=0$ and $\delta=1 / \varepsilon$. Once more, the isotropy conditions (4.6) imply that all invariant tensor fields vanish.

4.6. G_{6}

An element $g \in G_{6}$ is of the form (2.1) where

$$
R=\left(\begin{array}{ccc}
\cos \varphi & -\sin \varphi & 0 \tag{4.39}\\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right) \quad L=\left(\begin{array}{ll}
1 & 0 \\
\gamma & 1
\end{array}\right) \quad \boldsymbol{a}=\left(\begin{array}{l}
0 \\
0 \\
\rho
\end{array}\right)
$$

Choosing p_{0} as $\left(\begin{array}{llll}0 & 0 & 0 & 1\end{array} 1\right)^{\mathrm{T}}$, an arbitrary point p on the orbit is of the form:

$$
p=g p_{0}=\left(\begin{array}{c}
v_{1} \tag{4.40}\\
v_{2} \\
v_{3}+\rho \\
1 \\
\gamma+1
\end{array}\right) \sim\left(\begin{array}{c}
v_{1} /(\gamma+1) \\
v_{2} /(\gamma+1) \\
\left(v_{3}+\rho\right) /(\gamma+1) \\
1 /(\gamma+1) \\
1
\end{array}\right)
$$

and the isotropy subgroup G_{0} contains all the elements $g_{0} \in \mathrm{G}_{6}$ such that $v=(0,0,-\rho)^{\mathrm{T}}$ and $L=\mathbb{0}$. The orbit in \mathbb{R}^{5} is defined by

$$
\begin{equation*}
u^{4}=1 \tag{4.41}
\end{equation*}
$$

so that its cotangent space is given by

$$
\begin{equation*}
\mathrm{d} u^{4}=0 \tag{4.42}
\end{equation*}
$$

and the correspondence between the orbit in \mathbb{R}^{5} and \mathbb{R}^{3+1} is

$$
\begin{equation*}
u^{5}=1 / t \quad u^{i}=x^{i} / t \tag{4.43}
\end{equation*}
$$

The invariant tensor fields are then

$$
\begin{align*}
& A(\boldsymbol{x}, t)=M \mathrm{~d} t / t^{2} \\
& F(\boldsymbol{x}, t)=M_{1}\left[\left(\mathrm{~d} x \wedge \mathrm{~d} y / t^{2}\right)+\left(\mathrm{d} t / t^{3}\right) \wedge(y \mathrm{~d} x-x \mathrm{~d} y)\right] \tag{4.45}\\
& S(\boldsymbol{x}, t)=\left(M_{2} / t^{2}\right)\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}\right)-\left(2 M_{2} / t^{3}\right)(x \mathrm{~d} x+y \mathrm{~d} y) \mathrm{d} t+\left(1 / t^{4}\right)\left[M_{2}\left(x^{2}+y^{2}\right)+M_{3}\right] \mathrm{d} t^{2} \tag{4.46}
\end{align*}
$$

where M, M_{1}, M_{2} and M_{3} are arbitrary constants.

5. Invariant electromagnetic fields and potentials: infinitesimal method

In this section we introduce what we call 'Schrödinger's electromagnetism', i.e. Galilei's electromagnetism where besides Galilean transformations we include dilations and expansions in order to study the more general non-relativistic coordinate transformations leading to a group structure, as is clear from § 2. Then, within this Schrödinger electromagnetism, we want to establish invariant 2 - and 1 -forms through the infinitesimal method (analogous to that developed in BHPW) and to relate the results with the ones obtained in §4. Let us first recall some characteristics of Galilei's electromagnetism (§5.1) and extend these considerations to Schrödinger's electromagnetism (§5.2).

5.1. Galilei's electromagnetism

The magnetic limit (Le Bellac and Lévy-Leblond 1973) of the Maxwell theory has already been studied. In such a limit, the electric (\boldsymbol{E}) and magnetic (\boldsymbol{B}) fields satisfy the following set of equations:

$$
\begin{equation*}
\boldsymbol{\nabla} \times \boldsymbol{E}+\partial_{t} \boldsymbol{B}=0 \quad \boldsymbol{\nabla} \cdot \boldsymbol{B}=0 \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla \times B=j \quad \nabla \cdot E=\rho \tag{5.2}
\end{equation*}
$$

where ρ and \boldsymbol{j} are the charge and current densities respectively. From equations (5.1), the 'electromagnetic' field $F \equiv(\boldsymbol{E}, \boldsymbol{B})$ derives from scalar (V) and vector (\boldsymbol{A}) potentials as in the relativistic context:

$$
\begin{equation*}
E=-\nabla V-\partial_{t} A \quad B=\nabla \times A \tag{5.3}
\end{equation*}
$$

and the associated transformation laws (under infinitesimal Galilean transformations) are (Le Bellac and Lévy-Leblond 1973):

$$
\begin{align*}
& \boldsymbol{E}^{\prime}\left(\boldsymbol{x}^{\prime}, t^{\prime}\right)=\boldsymbol{E}(\boldsymbol{x}, t)+\boldsymbol{\theta} \times \boldsymbol{E}(x, t)+\boldsymbol{v} \times \boldsymbol{B}(\boldsymbol{x}, t) \\
& \boldsymbol{B}^{\prime}\left(\boldsymbol{x}^{\prime}, t^{\prime}\right)=\boldsymbol{B}(\boldsymbol{x}, t)+\boldsymbol{\theta} \times \boldsymbol{B}(\boldsymbol{x}, t) \tag{5.4}
\end{align*}
$$

while the corresponding ones on potentials (and currents) are

$$
\begin{align*}
V^{\prime}\left(\boldsymbol{x}^{\prime}, t^{\prime}\right) & =V(\boldsymbol{x}, t)-\boldsymbol{v} \cdot \boldsymbol{A}(\boldsymbol{x}, t) \tag{5.5}\\
\boldsymbol{A}^{\prime}\left(\boldsymbol{x}^{\prime}, t^{\prime}\right) & =\boldsymbol{A}(\boldsymbol{x}, t)+\boldsymbol{\theta} \times \boldsymbol{A}(\boldsymbol{x} ; t)
\end{align*}
$$

If invariance conditions on constant and uniform electric and magnetic fields are under consideration, it is well known (Bacry et al 1970) that the kinematical group of such F is of dimension 6 and is the largest symmetry group of non-trivial invariant F. From the classification of all non-equivalent subalgebras of the Galilei algebra (Sorba 1974), it is easy to show that among the sixteen six-dimensional subalgebras only one of these leads to a non-trivial 'electromagnetic' field in the magnetic limit: it corresponds to the one leading to the above kinematical group and is explicitly given by the basis $\left\{J_{3}, K_{3}, P, H\right\}$ leaving the so-called $F_{\|}$invariant:

$$
\begin{equation*}
F_{\|} \equiv\{\boldsymbol{E}=(0,0, E), \boldsymbol{B} \equiv(0,0, B)\} . \tag{5.6}
\end{equation*}
$$

Let us note that the above remark leads to a quite different result in comparison with the one of the Poincaré context (Combe and Sorba 1975) where there are non-trivial non-constant electromagnetic fields admitting a six-dimensional symmetry.

Finally, let us recall (Hussin 1984) in this Galilei electromagnetism that invariance conditions on constant and uniform '4-vectors' have also been considered. The corresponding kinematical groups are ten- or seven-dimensional structures depending on whether the spatial part is zero or not. These are the largest symmetries of arbitrary '4-vectors'.

5.2. Schrödinger electromagnetism

If we add to Galilean transformations the so-called dilations and expansions (see § 2), we need to extend the transformation laws (5.4) and (5.5). Under infinitesimal transformations (2.6), it is not difficult (Hussin and Sinzinkayo 1985) to obtain the new laws

$$
\begin{align*}
& E^{\prime}\left(\boldsymbol{x}^{\prime}, t^{\prime}\right)=\left[1-\frac{3}{2}(\alpha+2 c t)\right] E(x, t)+\boldsymbol{\theta} \times \boldsymbol{E}(\boldsymbol{x}, t)+(\boldsymbol{v}-c \boldsymbol{x}) \times \boldsymbol{B}(\boldsymbol{x}, t) \\
& \boldsymbol{B}^{\prime}\left(\boldsymbol{x}^{\prime}, t^{\prime}\right)=[1-(\alpha+2 c t)] \boldsymbol{B}(\boldsymbol{x}, t)+\boldsymbol{\theta} \times \boldsymbol{B}(x, t) \tag{5.7}
\end{align*}
$$

and

$$
\begin{align*}
& V^{\prime}\left(\boldsymbol{x}^{\prime}, t^{\prime}\right)=[1-(\alpha+2 c t)] V(\boldsymbol{x}, t)-(\boldsymbol{v}-c \boldsymbol{x}) \cdot \boldsymbol{A}(\boldsymbol{x}, t) \\
& \boldsymbol{A}^{\prime}\left(\boldsymbol{x}^{\prime}, t^{\prime}\right)=\left[1-\frac{1}{2}(\alpha+2 c t)\right] \boldsymbol{A}(\boldsymbol{x}, t)+\boldsymbol{\theta} \times \boldsymbol{A}(\boldsymbol{x}, t) \tag{5.8}
\end{align*}
$$

ensuring the invariance of equations (5.1) and (5.2) under such Schrödinger transformations if the charge and current densities transform according to

$$
\begin{align*}
& \rho^{\prime}\left(x^{\prime}, t^{\prime}\right)=[1-2(\alpha+2 c t)] \rho(x, t)-(v-c x) \cdot j(x, t) \\
& j^{\prime}\left(x^{\prime}, t^{\prime}\right)=\left[1-\frac{3}{2}(\alpha+2 c t)\right] j(x, t)+\theta \times j(x, t) . \tag{5.9}
\end{align*}
$$

We point out that under the Schrödinger group, the potential fields V and A transform like the derivatives (∂_{t} and $-\nabla$) but not the densities ρ and j. In the relativistic conformal context this result is completely similar due to the fact that (V, \boldsymbol{A}) and (ρ, \boldsymbol{j}) are not the same objects geometrically speaking: (V, \boldsymbol{A}) is a 1 -form while (ρ, \boldsymbol{j}) appears as a 3 -form in Minkowski spacetime.

Inside the Schrödinger context and more particularly inside this Schrödinger electromagnetism, we can get invariance conditions on 'electromagnetic' fields and potentials. These conditions are expressed in infinitesimal form:

$$
\begin{equation*}
\delta \boldsymbol{E}(\boldsymbol{x}, t) \equiv \frac{3}{2}(\alpha+2 c t) \boldsymbol{E}-\boldsymbol{\theta} \times \boldsymbol{E}-(\boldsymbol{v}-c \boldsymbol{x}) \times \boldsymbol{B}+\mathscr{D} \boldsymbol{E}=0 \tag{5.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta \boldsymbol{B}(\boldsymbol{x}, t) \equiv(\alpha+2 c t) \boldsymbol{B}-\boldsymbol{\theta} \times \boldsymbol{B}+\mathscr{D} \boldsymbol{B}=0 \tag{5.11}
\end{equation*}
$$

where
$\mathscr{D}=b \partial_{t}+\boldsymbol{a} \cdot \boldsymbol{\nabla}+\boldsymbol{\theta} \cdot(\boldsymbol{x} \times \boldsymbol{\nabla})-t \boldsymbol{v} \cdot \boldsymbol{\nabla}+\alpha\left(t \partial_{t}+\frac{1}{2} \boldsymbol{x} \cdot \boldsymbol{\nabla}\right)+c t\left(t \partial_{t}+\boldsymbol{x} \cdot \boldsymbol{\nabla}\right)$.
For constant and uniform fields, we immediately obtain from (5.10):

$$
\begin{equation*}
(\alpha+2 c t) B^{2}=0 \tag{5.13}
\end{equation*}
$$

so that if we deal with the magnetic limit, we have to choose $\alpha=c=0$. In conclusion, the symmetry is the one of Galilei's electromagnetism. The invariance conditions on potentials are

$$
\delta V(\boldsymbol{x}, t) \equiv(\alpha+2 c t) V+(\boldsymbol{v}-c \boldsymbol{x}) \cdot \boldsymbol{A}+\mathscr{D} V=0
$$

and

$$
\begin{equation*}
\delta \boldsymbol{A}(\boldsymbol{x}, t) \equiv \frac{1}{2}(\alpha+2 c t) \boldsymbol{A}-\boldsymbol{\theta} \times \boldsymbol{A}+\mathscr{D} \boldsymbol{A}=0 . \tag{5.14}
\end{equation*}
$$

Then in the constant and uniform case, we get the same results as in the Galilei context.
Let us now determine the fields ($(\boldsymbol{E}, \boldsymbol{B})$ and $(\boldsymbol{V}, \boldsymbol{A})$) invariant under the maximal subalgebras (listed in table 2). We immediately deduce that only the maximal subalgebra $\mathrm{f}_{1} \equiv \operatorname{so}(3) \oplus \operatorname{sl}(2, \mathbb{R})$ can admit a non-trivial 'electromagnetic' field. This case is very well known (Jackiw 1980, Horvathy 1983, D'Hoker and Vinet 1984, 1985): the most general field is

$$
\begin{equation*}
\boldsymbol{E}=E x / r^{4} \quad B=B x / r^{3} \tag{5.15}
\end{equation*}
$$

Otherwise, only two of the maximal subalgebras admit non-trivial invariant '4-vectors'. Indeed, for the subalgebra f_{1} we have

$$
\begin{equation*}
V=d / r^{2} \quad A=0 \tag{5.16}
\end{equation*}
$$

while for the subalgebra $n \square \mathrm{f}_{7}$, we obtain

$$
\begin{equation*}
V=d^{\prime} /\left(\sigma+t^{2}\right) \quad A=0 \tag{5.17}
\end{equation*}
$$

These results are the same as those obtained in § 4.
Finally, if we consider the six-dimensional non-maximal subalgebra of sch_{3} generated by $\left\{J_{3}, C, K, P_{3}\right\}$, it does admit an invariant 'electromagnetic' field which is explicitly obtained in the form

$$
\begin{equation*}
\boldsymbol{E}=\left(-m y / t^{3}, m x / t^{3}, 0\right) \quad \boldsymbol{B}=\left(0,0, m / t^{2}\right) \tag{5.18}
\end{equation*}
$$

Let us make some comments about the physical interpretation of the fields (5.15) and (5.18) (which are solutions of equations (5.1) and (5.2)). Firstly, let us insist on the fact that such 'electromagnetic' non-constant fields admit symmetry algebras of maximal dimension equal to six inside the Schrödinger algebra. Secondly, for the field (5.15), we evidently recognise the field of the magnetic monopole-already discussed in the Schrödinger context (Jackiw 1980, Horvathy 1983, D'Hoker and Vinet 1984, 1985)-and an electric field deriving from an r^{-2} scalar potential (D'Hoker and Vinet 1984, 1985). Finally, the invariant field (5.18) derives from the potential

$$
\begin{equation*}
V=0 \quad A=\left(-m y / 2 t^{2}, m x / 2 t^{2}, 0\right) \tag{5.19}
\end{equation*}
$$

which admits a symmetry subalgebra of the field generated by $\left\{J_{3}, K_{3}, C, P_{3}\right\}$. In such a case, let us recall that for the missing field symmetries we can compensate the non-invariance by introducing so-called (Janner and Janssen 1971) compensating gauge transformations W defined by (Beckers and Hussin 1983a, b)

$$
\begin{equation*}
\partial_{t} W=-\delta V \quad \nabla W=-\delta A \tag{5.20}
\end{equation*}
$$

Here, the non-constant transformations W are explicitly

$$
\begin{equation*}
W_{K_{1}}=t A_{1} \quad W_{K_{2}}=t A_{2} . \tag{5.21}
\end{equation*}
$$

6. Comments

We first notice that the results of $\S \S 4$ and 5 are evidently in complete agreement. They show that no non-trivial F exists when the dimension of the symmetry group is greater than six, a property very easily deduced from the infinitesimal approach. In the G_{1} and G_{6} cases, we get two physically interesting results.
(i) The $\mathrm{G}_{1}=\mathrm{SO}(3) \times \mathrm{SL}(2, \mathbb{R})$ maximal subgroup gives the expected results at the level of the magnetic field (Jackiw 1980, Horvathy 1983, Hussin and Sinzinkayo 1985) and its magnetic monopole context as well as at the level of the electric field (D'Hoker and Vinet 1984, 1985, Hussin and Sinzinkayo 1985).
(ii) The G_{6} subgroup, a non-maximal one but a common subgroup (of dimension 6) of two maximal ones (G_{3} and G_{5}), is a specific case showing that there exist invariant non-constant electromagnetic fields other than Coulomb-like fields which satisfy the equations of Schrödinger's electromagnetism.

Secondly, we insist on the G_{6} case from the point of view of compensating gauge transformations, subsymmetries of the potentials with respect to those of the field and, consequently, on non-trivial extensions in correspondence with the explicit forms of constants of motion (Beckers and Hussin 1984). In such a context, let us mention the six constants of motion issued from the corresponding realisation of the extended subalgebra. These elements are based on the results (5.19)-(5.21) and we obtain

$$
\begin{array}{ll}
J_{3}=(\boldsymbol{x} \times \boldsymbol{p})_{3}+\frac{1}{2} \mathrm{i} \sigma_{3} & K_{3}=-t p_{3}+m z \\
K_{1}=-t p_{1}+m x+e W_{\mathrm{K}_{1}} & K_{2}=-t p_{2}+m y+e W_{K_{2}} \tag{6.1}\\
P_{3}=p_{3} & C=t\left[t H_{\mathrm{P}}-t \boldsymbol{x} \cdot \boldsymbol{p}+(3 \mathrm{i} / 2)\right]+(m / 2) \boldsymbol{x}^{2}
\end{array}
$$

where H_{P} is the Pauli Hamiltonian

$$
\begin{equation*}
H_{\mathrm{P}}=(1 / 2 m)(\boldsymbol{p}+e \boldsymbol{A})^{2}-(e / 2 m) \boldsymbol{B} \cdot \boldsymbol{\sigma} . \tag{6.2}
\end{equation*}
$$

Thirdly, let us just mention that if invariant (0,2)-symmetric tensors S can be determined from the global point of view (see §4), we know that in the Newtonian spacetime they have no direct meaning as metric tensors in contradiction with respect to the relativistic cases developed in BHPW.

Finally, let us complete our comments in connection with Schrödinger's electromagnetism by pointing out that the so-called electric limit (Le Bellac and Lévy-Leblond 1973) can in principle be studied through the infinitesimal method as we have worked out the magnetic one, but not through the global method as is clear from geometrical considerations. Such a remark asks for complementary comments actually under study: let us only mention here that forms correspond to covariant tensors and are ad hoc geometrical objects with respect to the global approach when the magnetic limit is taken into consideration but not the electric limit.

Acknowledgments

We want to express our hearty thanks to Professor J Beckers for very stimulating discussions as well as for his very kind interest.

References

Antoine J P and Jacques M 1984 Class. Quantum Grav. 1431-46
Bacry H, Combe Ph and Richard J L 1970 Nuovo Cimento A 70 289-312
Barut A O 1973 Helv. Phys. Acta 46 496-503
Beckers J, Harnad J and Jasselette P 1980 J. Math. Phys. 21 2491-9
Beckers J, Harnad J, Perroud M and Winternitz P 1978 J. Math. Phys. 19 2126-53
Beckers J and Hussin V 1983a J. Math. Phys. 24 1286-94
-_ 1983b J. Math. Phys. 24 1295-8

- 1984 Phys. Rev. D 29 2814-21

Beckers J and Jaminon M 1978 Physica A 94 165-80
Beckers J, Jaminon M and Serpe J 1979 J. Phys. A: Math. Gen. 12 1341-56
Beckers J, Patera J, Perroud M and Winternitz P 1977 J. Math. Phys. 18 72-83
Beckers J and Sinzinkayo S 1982 Lett. Nuovo Cimento 35 361-4
—— 1984 Physica A 126 371-83
Boyer C P, Sharp R T and Winternitz P 1976 J. Math. Phys. 17 1439-51
Burdet G, Patera J, Perrin M and Winternitz P 1978 Ann. Soc. Math. Québec II 81-108
Burdet G and Perrin M 1972 Lett. Nuovo Cimento 4 651-5

- 1975 J. Math. Phys. 16 2172-6

Burdet G, Perrin M and Sorba P 1973 Lett. Nuovo Cimento $7855-9$
Combe Ph and Sorba P 1975 Physica A 80 271-86
D'Hoker E and Vinet L 1984 Phys. Lett. 137B 72-6

- 1985 Commun. Math. Phys. 97 391-427

Doneux J, Saint-Aubin Y and Vinet L 1982 Phys. Rev. D 25 484-501
Englefield M 1972 Group Theory and Coulomb Problems (New York: Wiley)
Hagen C R 1972 Phys. Rev. D 5 377-88
Harnad J, Shnider S and Vinet L 1979 J. Math. Phys. 20 931-42
Harnad J and Vinet L 1978 Phys. Lett. 76B 589-92
Horvathy P A 1983 Lett. Math. Phys. 7 353-61
Hussin V 1984 PhD Thesis Liège, Belgium
Hussin V and Sinzinkayo S 1985 J. Math. Phys. 26 1072-6
Jackiw R 1980 Ann. Phys., NY 129 183-200
Janner A and Janssen T 1971 Physica 53 1-27
Kobayashi S and Nomizu K 1963 Foundations of Differential Geometry vol I (New York: Interscience)
Le Bellac M and Lévy-Leblond J M 1973 Nuovo Cimento B 14 217-33
Légaré M 1983 J. Math. Phys. 24 1219-23
Légaré M and Harnad J 1984 J. Math. Phys. 25 1542-7
Niederer U 1972 Helv. Phys. Acta 45 802-10

- 1973 Helv. Phys. Acta 46 191-200
_- 1974 Helv. Phys. Acta 47 119-29
Patera J, Winternitz P and Zassenhaus H 1975 J. Math. Phys. 16 1597-614
Roman P, Aghassi J J, Santilli R M and Huddelston P L 1972 Nuovo Cimento A 12 185-204
Sinzinkayo S and Demaret J 1985 Gen. Rel. Grav. 17 187-201
Sorba P 1974 J. Math. Phys. 17 941-53
Vinet L 1981 Phys. Rev. D 24 3179-93
Yang C N and Mills R L 1954 Phys. Rev. 96 191-5

